Course Code: ECON 303

Course Type (GED/Core/Elective): Core Year/Level/Semester/Term: 3rd Year Academic Session: 2021-22 & 2022-23 Course Teacher/ Instructor: Pre-requisite (if any): ECON 103 Credit Value: 04 Contract Hours: 60

Course Rationale: Tools learned in mathematical economics help present economic theories in elegant ways. Optimizing behavior of households and firms, both from static and dynamic viewpoints, cannot be understood well without proper knowledge of mathematical economics.

Course Objectives: The purpose of this course is to introduce a variety of mathematical concepts used in economic analysis including integration, difference and differential equations, linear and non-linear programming, calculus of variations and set theory.

Course Learning Outcomes: After successful completion of the course, students will be able to:

- 1. solve constrained optimization problems faced by both households and firms;
- 2. apply rules of integration to recover the parent function from a given function;
- 3. solve dynamic economic problems involving difference and differential equations;
- 4. find equilibrium time path of variables from difference and differential equations; and
- 5. present arguments in terms of set theory.

CLO/PLO	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9
CLO1	3	2	2	1	0	1	0	0	1
CLO2	3	2	2	2	3	2	3	1	2
CLO3	3	2	3	3	2	3	2	1	2
CLO4	2	0	3	3	2	2	2	2	1
CLO5	3	3	2	2	3	2	3	1	1

CLOs Mapped to PLOs

Course Contents

Topic	Content Summary	Teaching	In-Class	#Class	CLOs
		Strategies/Tools	Assessment	Hours	
1	Constrained Optimization:	Strategies: Verbal and	Q&As		
	Free vs. Constrained Optimization,	mathematical exposition.	Quizzes		
	Lagrangian Method; Constrained	Tools: Books; Handouts;	Homework	6	1
	Utility Maximization; Constrained	Multimedia; Online	Assignments		
	Output Maximization and	resources	Presentations		
	Constrained Cost Minimization.		Tutorials		
2	Review of Matrix Algebra :				
	Applications; Leontief's Input-				
	Output Model - Input Coefficient,	As above	As above	6	1
	Output Matrix, Final Demand Vector,				
	Specific Input-Output Matrix				
	Equation, Correct Levels of Output.				
3	Homogeneous Functions:				
	Properties of homogeneous and				
	homothetic functions; Linear vs.	As above	As above	6	2
	linearly homogeneous production				
	functions; Euler's theorem; Elasticity				

	of Substitution				
-					
4	Integration: Definite vs. indefinite			-	
	integral; Geometric interpretation	As above	As above	6	2,3
	Use of definite integrals; Computing				
	consumer and producer surplus.				
5	Differential Equation : Definition of				
	Differential Equation, First Order				
	Linear Differential Equation With				
	Constant Coefficient and Constant	As above	As above	6	4
	Term, With Variable Coefficient and				
	Variable Term, General Solution,				
	Definite Solution, Applications.				
6	Difference Equation : Differential				
	and Difference Equations: First Order				
	Difference Equation: Solutions of a	As above	As above	8	4
	Difference Equation Time Path:			Ű	
	Cobweb Model: Inventory Model				
7	Linear and Non-Linear				
	Programming:				
	Classical vs. Non-classical Technique				
	of Solving Optimization Problem:				
	Elements of a Linear Programming	As above	As above	8	5
	Problem - Objective Function			0	
	Inequality Constraints Basic				
	Feasible Solutions Graphical				
	Solutions Simpley Method: Duality:				
	Nonlinear Programming: Kuhn-				
	Tucker Conditions				
0	Flomentery Notions of Calculus of				
0	Variations, Eurotional pagagamy				
	conditions for ontimal values				
	Poundary conditions Economic	As above	Agabaya	6	6
	applications, Inter temporal	As above	As above	0	0
	applications. Intel-temporal				
	consumption decision, Efficient paths				
	of capital accumulation, Optimum				
0	growin and Turnpike Theorem.				
9	Sets: Elements of a set; Set				
	operations; Set union & intersection				
	Complementation; Venn diagrams;				
	Properties of relations; Domain and				
	converse domain; Equivalence	As above	As above	4	6
	relations; Pre-ordering; Weak and				
	strong ordering; Applications;				
	Theory of consumer behavior,				
	Preference and indifference relations,				
	Complete and partial ordering.				

Class Schedule:

Lesson Plan

Week(s)	Topic(s)	#Classes	CLO(s)	Remarks
1-3	1	1-6	1	
4-6	2	7-12	1	
7 – 9	3	13 - 18	2	<i>Class Test 1</i> : (Topics 1 & 2) 13 th Class
10 - 12	4	19-24	2, 3	
13 – 15	5	25-30	4	<i>Class Test 2</i> : (Topics 3 & 4) 25 th Class)
16 – 19	6	31 - 38	4	

20 - 23	7	39-46	5	Class Test 3: (Topics 5 & 6) 39th Class
24 – 26	8	47 - 52	5	
27 - 28	9	53 - 56	6	
29 - 30	1 - 9	57 - 60	6	Review

Overall Evaluation Policy:

- a. Continuous Internal Evaluation (CIE): Marks 00
- b. Year-End Examination (YEE): Marks 100

Bloom's Category	Marks (100)
Remember	20
Understand	20
Apply	30
Analyze	10
Evaluate	10
Create	10

c. Grading Scheme: As in Section 19

Policy for Make-Up Classes:

- Utilize the open slots in consultation with students
- Swap classes with colleagues

Basic Text

1. Chiang, A. C., & Wainwright, K. (2013). *Fundamental Methods of Mathematical Economics*. Boston: McGraw Hill.

Recommended References

- 1. Allen, R. G. D. (2009). Mathematical Analysis for Economists. Macmillan.
- 2. Arrow, K. J., & Intriligator, M. D. (eds.) (2010). *Handbook of Mathematical Economics*. North-Holland.
- 3. Dowling, E. T. (2012). Introduction to Mathematical Economics. McGraw Hill.
- 4. Hoy, M., Livernois, J., McKenna, C., Rees, R., & Stengos, T. (2011). *Mathematics for Economics*. The MIT Press.
- 5. Intriligator, M. D. (2013). Mathematical Optimization and Economic Theory. PHI Learning Ltd.

Other Resources

- Online video lectures
- Course-packs
- Handouts